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@ Magnetic device development paradigm.
@ Magnetic device design and simulation capabilities at JPL.

© Magnetic device experimentation and observation
capabilities at JPL.

@ Standardization of magnetic device development tools and
processes.

@ Potential applications in future space missions.
e Conclusions.
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A Device Development Paradigm
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@ Device development uses cycles of design, fabrication,
experimentation, and analysis.

@ Device design invokes conceptual and calculable
design precesses, includingeanalytical and simulated
calcu fFons, based on avaiJable  materials, fabrication
processes, and test data.

@ Experimentation, testing, and characterization are used
to demonstrate device performance, and to validate
fabrication and design processes.
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Magnetic Device Layout
Representatio

@ Magnetic Device Layers:
» Conductors.
» Insulators and Dielectrics.
» Vias.
» Permeable magnetic layers.
» Magnetoresistors.
» Permanent magnets.
» Implantation.
» Stress Layers.
» MIrrors.

© Output formats:
» CIF.
» GDS-IL
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@ Simulate static and dynamic domain wall motion in a
magnetic material.

@ Represent a domain wall by a set of wall points.
e Model material parametrically.

e Apply equation of motion at wall points to determine
domain wall dynamics.

@ Use on workstations or personal cor; juters to
simulate dynamics u. to millimeter imensions for up
to millisecond durations.

@ Provide graphical and file-input user interfaces to

facilitate initiating, visualizing, and analyzing case
studies.

JPL/CSMT
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Micromagnetic Devices Group
DWM: Overview
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Micromagnetic Devices Group
Sample DWM Result
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@ Simulate statics and dynamics of magnetization In
discretized cells in a magnetic material.

@ Represent domain wall as a strip of reversing
magnetization.

@ Solve the Landau-Lifschitz-Gilbert equation of
motion locally to determine magnetization dynamics.

@ Use on supercomputers to simulate dynamics at
submicron nanoscales for submicrosecond durations.

@ Provide graphical and file-input user interfaces to

facilitate Initiating, visualizing, and analyzing case
studies.

MT
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Micromagnetic Devices Group
Sample Micromagnetic Result
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m Structure of a 2nt VBL in garnet material.
(color shows component of magnetization perpendicular to wall surface)

April 3,1995/JPL
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}PL Experlmentatlon Capabllltles

© Electro-magneto-optic test systems:
» Continuous illumination microscopy.
» High=resolution sampling microscopy.

@ Magnetoresistance characterization system.
@ Electrical wafer-level probing systems.
@ Logic analyzers.

@ Characterization:
» SEM, TENI, AFM, XRD, etc.

e Spaceflight Experiments.

. ' JPL/CSMT
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Electro-magneto-optic testing:
Continuous illumination

@ Observe domains, domain walls, and domain wall

structure in magnetic devices and films in transmission
and reflection.

@ Observe magnetic domain characteristics statically and
through time-averaging, using optical and opto-
electronic observation.

@ Use continuous illumination to maximize image signal-
to-noise ratio:

» High photon density.
» Signhal averaging.
@ Operate device subject to a variety of magnetic fields
under computer control:

» Derive AC and DC fields from on-chip conductors; with in-plane and
out-of-plane components.

» Derive AC and DC fields from off-chip coils, magnets, and
electromagnets; with in-plane and out-of-plane components.
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Electro-magneto-optic testing:
g MICrosco
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@ Observe domains, domain walls, and domain wall .

structure in magnetic devices and films in transmission
and reflection.

e Observe magnetic domain characteristics in a sampling
mode, using optical and opto-electronic observation.

® Use laser stroboscope and image processing to
determine repetitive magnetization dynamics with
a!?proxmate ¥ 10 ns event resolution:

Perform flash microscopy using high-power pulse laser and SIT
camera.

magnetization dynamics.

e Operate device subject to a variety of magnetic fields
under computer control:

» Derive AC and DC fields from on-chip conductors; with k-plane and
out-of-plane components.

» Derive AC and DC fields from off-chip coils, magnets, and
electromagnets; with in-plane and out-of-plane components.

JPL/CSMT
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Potenti
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© Ovaprtunities_ exist for demonstrating and validating new
tecinologies in space to enable new space missions:

\ Performance in space and Performance determined in space testing

‘ provides additional experimental data on magnetic device operation
characteristics.

» Performance in space provides additional technology validation.

» Space applications provide requirements which have similarities to and
differences from commercial requirements.

» The potential for addressin%v‘/iab“,it){‘ In space applications may be
promising, such as through ASA’s “New Millenium” program.

PL/CSMT
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A Sample Magnetic Device under
Development: A VBL Data StoragChip
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© Simulation tools, emulation tools, and statistical models

written at a variety of levels support semiconductor device
development.

e Standard layout descriptiorﬂ/si é@%‘éf)ﬂf})ﬁﬂﬂ %%éardized

fabrication processes (e.g., on
prototyping and packaging of semicon

@ A variety magnetic desgn tonls and simu ati[on tools exist
for designing magnetic devices, such'as electromagnetic

field computation tools and Landau-Lifschitz-Gilbert
equation solvers.

e Magietic materials and device fabrication capabilities

existin a variety of universities, laboratories, and
corporations

e Standardization of magnetic device descrl’tio;%g and

ucto vices.

fabrication capabilities could greatly assis m{netic

device development in analogy to that realize or
semiconductor devices.

’ JPL/CSMT
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Conclusions

e Magnetic design and testing cipabilities exist which
can and are being used to develop and to investigate
new magnetic devices.

e The possibilitté;of Investigating new device _
technologies o space applications offers the potential
opportunity for validatitg new technologies while

enabling and enhancing future space missions.

e An opportunity exists to define and to standardize
magnetic device design tools, design layout _
descriptions, and fabrication processes to simplify and
expedite magnetic device development.
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